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Chapter 3: THE TWO-PLUS-ONE RUNUP 
MODEL

 

This chapter describes the numerical model of the 2+1 propagation and runup of long

waves on beaches with arbitrary topography. As earlier, the field equations are the shallow-

water wave equations, without friction factors or artificial viscosity. In this chapter, we will

describe the numerical algorithm and the validation of the model. Results from the labora-

tory experiment of the wave runup on a conical island are used as one test for the model

verification.

 

3.1 Introduction

 

The finite-difference method has been widely used for tsunami propagation modeling and

it has become a natural choice for several tsunami inundation models. Shuto (1985, 1991)

used the staggered explicit leap-frog finite-difference scheme to simulate the inundation of

the 1983 Japan Sea tsunami. This model has been refined by Imamura (1995) and Taka-

hashi (1995) to develop what is now the most widely used model for the tsunami inunda-

tion. Several numerical runup models were produced based on the same technique

(Liu,1995; Ortiz). Takahashi presented the model on the International Long Wave Runup

Workshop to simulate the Hokkaido-Nansei-Oki tsunami, which was one of the four bench-

mark problems (See description of the workshop on page 8). The inundation calculations

produced fairly correct results on the lee of the island, but on the front, they differed by a

factor of two from the field data.
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The other often used method to solve the shallow-water wave equations the is the

finite-element technique. The advantage of the method is the usage of an adaptive non-

structured numerical grid for the computations, that makes possible the resolution of the

changing wave length of the tsunami with enough grid point throughout the computational

domain. The disadvantage is a rather complex and computationally expensive way of in-

verting the step matrix, as compared with the finite-difference method. Baptista (1995)

used the finite-element method to model the benchmark problem of solitary wave runup on

a conical island. The results show that the method appears to be very sensitive to changing

the model parameters. The model has to be calibrated before the results fit well to the lab-

oratory data. Another finite-element inundation model presented recently is that of Kawa-

hara and Takagi (1995) to solve the same benchmark problem. The model showed a good

agreement with the laboratory data. Unfortunately, the authors did not use the method to

model the Hokkaido-Nansei-Oki tsunami and one cannot yet comment on the ability to

handle simulation over realistic bathymetries.

The goal of this study is to develop a robust numerical method for modeling the in-

teraction of 3-D long waves with nearshore bathymetry and on-shore topography with spe-

cific application to tsunami inundation modeling. The proposed model is the shallow-wa-

ter-wave equations, which is practically the only choice for most large-scale inundation

computations at the present state-of-the-science. Despite of its limitations, it will be dem-

onstrated in this study, that it simulates most of the important long wave characteristics dur-

ing the long-wave runup well enough for most engineering applications.
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As a part of the effort to reduce parameters of the model, no bottom friction terms

are included in this model. Although the bottom friction does affect the dynamic of the run-

up process in the surf zone, several reasons were considered for not using the friction terms

in the model. The commonly used bottom friction model for shallow-water-wave approxi-

mation is the Chésy formula with different types of roughness coefficient (Packwood and

Peregrine, 1981; Mader,1984; Kowalik,1987; Liu,1995; Kobayashi et al 1987, etc.). This

formula is an empirical relationship developed from steady channel flows, so it might not

reflect the dynamic of the rapid runup process adequately. Also, there is no consensus on a

proper form of the roughness coefficient in the formula. A number of studies are devoted

to the designing of a proper roughness coefficient instead of the commonly used Manning’s

coefficient (Fujima and Shuto, 1989). On the other hand, several studies show that an un-

steady flow during runup is not very sensitive to changes in the roughness coefficient value

(Pakwood and Peregrine 1981, Kobayashi et al 1987). Any numerical algorithm of moving

boundary for the wave runup induces a numerical friction near the tip of the climbing wave

(except perhaps, a Lagrangian formulation). This complicates the proper choice of the fric-

tion coefficient for any numerical model. The roughness coefficient in the numerical model

at present appears a quiet arbitrary parameter that is adjusted to fit a given experimental da-

ta, but is very difficult to be determined a priori. Given that extrapolation is always visky,

this reduces dramatically the prediction ability of a numerical model with ad-hoc parame-

ters. Since the goal is the evaluation of the maximum runup level and the maximum inun-

dation velocities which the friction can only reduce, it was decided not to complicate the

model with additional adjustment parameter.
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The solution introduced here uses the finite-difference method for solving the non-

linear shallow-water-wave equations, based on the method of fractional steps (Yanenko,

1971). This method hereafter referred to as VTCS-3 is the three-dimensional extension of

the 1+1 solution of Titov and Synolakis (1995) that has been extensively tested for the two-

dimensional case. The ability of the model to reproduce laboratory data for 3-D waves, and

to simulate various features of the real tsunamis will be demonstrated in the following sec-

tions.

 

3.2 Numerical model

 

3.2.1 Mathematical formulation

 

We use the two-dimensional shallow-water-wave equations (SW) to model the long wave

generation, propagation, evolution over physical bathymetry and runup phenomenon. The

2+1 shallow-water-wave equations are

(3.23)

where 

 

h

 

 = 

 

!

 

 (

 

x

 

,

 

y

 

,

 

t

 

) + 

 

d

 

(

 

x

 

,

 

y

 

,

 

t

 

), 

 

!

 

 (

 

x

 

,

 

y

 

,

 

t

 

) is the amplitude, 

 

d

 

(

 

x

 

,

 

y

 

,

 

t

 

) is the undisturbed water

depth, 

 

u

 

(

 

x

 

,

 

y

 

,

 

t

 

), 

 

v

 

(

 

x

 

,

 

y

 

,

 

t

 

) are the depth-averaged velocities in the 

 

x

 

 and 

 

y

 

 directions respective-

ly, 

 

g

 

 is the acceleration of gravity.

A variety of boundary and initial conditions can be specified for these equations. To

solve the problem of tsunami generation due to bottom displacement, the following initial

conditions are specified

ht uh( )x vh( )y+ + 0=

ut uux vuy ghx+ + + gdx=

vt uvx vvy ghy+ + + gdy=
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(3.24)

Usually, 

 

t

 

0

 

 is assumed to be small, so that the bottom movement is an almost instantaneous

vertical displacement, i.e. the initial condition is not time-dependent.

To produce waves entering into the computational area through the boundary 

 

y

 

 = 

 

y

 

b

 

the following boundary conditions are specified

(3.25)

The proper boundary conditions should be specified for open-sea boundary and for land

boundary. These conditions will be discuss later in this chapter.

 

3.2.2 Splitting technique

 

For arbitrary topography and bottom displacement the system of equations (3.23) has to be

solved numerically. Consider the finite-differences algorithm based on the splitting meth-

od, i. e. the method of fractional steps of Yanenko (1971). This method reduces the numer-

ical solution of the two-dimensional problem into consecutive solution of two instanta-

neous one-dimensional problems. This is achieved by splitting the governing system of

equations (3.23) (page 51) into a pair of systems, each containing only one space variable,

as follows

. (3.26)

d x y t, ,( ) d0 x y t, ,( ) t t0",=

d x y t, ,( ) d0 x y t0, ,( ) t t0",=

v x y t, ,( ) v0 x yb t, ,( )=

h x y t, ,( ) h0 x yb t, ,( )=

ht uh( )x+ 0=

ut uux ghx+ + gdx=

vt uvx+ 0=# $
% %
& '
% %
( )

and

ht vhy+ 0=

vt vvy ghy+ + gdy=

ut vuy+ 0=# $
% %
& '
% %
( )
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The two systems of equations (3.26) can be solved sequentially at each time step using ap-

propriate numerical methods. Here, an explicit finite-difference scheme is used to solve

(3.26), although, the conventional procedure for the splitting method is to use implicit nu-

merical scheme for solving 1+1 equations. The implicit method works effectively for ellip-

tic and parabolic equations, where splitting provides a substantial reduction of the number

of operations compared with application of the implicit scheme directly to 2+1 elliptic or

parabolic equations (Fletcher, 1991, Ch. 8.5). In this case system (3.23) is a hyperbolic qua-

si-linear system, where explicit methods have proven to be very efficient. Here, it was

found advantageous to use the splitting method in combination with an explicit finite-dif-

ference technique. The main advantage of this approach is the use a characteristic form of

the 1+1 equations. The characteristic analysis helps establish a well-posed boundary-value

problem. The characteristic form of equations also allows for an efficient finite-difference

realization (Titov and Synolakis, 1995).

Each of the systems (3.26) is a hyperbolic quasi-linear system with all three real and

distinct eigenvalues. It can be written in characteristic form as follows,

(3.27)

where

(3.28)

are the Riemann invariants of this system and

p1 *1 px+ gdx=

q1 *1qx+ gdx=

v'1 *1v'x+ 0=

p u 2 gh+=

q u 2 gh–=
v' v=
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(3.29)

are the eigenvalues.

An explicit finite-difference method is used to solve equations (3.27) along x and y

coordinate sequentially at every time step. The first two equations in (3.27) constitute a

one-dimensional shallow-water wave evolution problem. It means that every time step a

one-dimensional long wave propagation problem is solved along each coordinate plus one

more equation describing a nonlinear momentum flux in the direction normal to the coor-

dinate. The method developed for the 1+1 long wave propagation and runup (Titov and

Synolakis, 1995) is used to solve each of the systems (3.27).

The overall procedure utilizing the splitting technique for the system (3.23) can be

summarized as follows. Given un, v´n, hn at time t, the algorithm of computing values un+1,

v´n+1, hn+1 for time instant t++t involves the following steps.

1. Convert the primitive variables un, vn, hn into the Riemann invariants pn, qn, v´n using
the transformation (3.28).

2. Compute values pn+1/2, qn+1/2, v´n+1/2 by solving numerically system (3.27) along the x-
coordinate.

3. Convert pn+1/2, qn+1/2, v’n+1/2 to the primitive variables un+1/2, vn+1/2, hn+1/2 using the
transformation inverse to (3.28).

4. Repeat the steps one through three above for un+1/2, v´n+1/2, hn+1/2 along the y-coordinate
to compute the values un+1, v´n+1, hn+1. Note, that the Riemann invariants are different
during that step, because u and v are interchanged in (3.28) and (3.29).

*1 u gd+=

*2 u gd–=

*3 u=
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3.2.3 Boundary conditions for fixed boundaries
The splitting method requires the solution of one-dimensional systems of equations (3.26)

every time step. Therefore, boundary conditions should be established for the two 1+1

problems. As in chapter 2, characteristic analysis will be used to establish a well-posed

boundary values for a one-dimensional hyperbolic system. The following discussion uses

the method of section 2.3.2 which is applied here for the system (3.27).

Figure 3.16 Sketch of the characteristic lines for the system (3.27).

Consider solution of the system of equations (3.27) in the area shown in Figure

3.16. It is a hyperbolic quasi-linear system with all real and different eigenvalues (3.29). It

has three families of characteristic lines with slopes *1, *2 and *3; The eigenvalue *1 is pos-

itive while *2 is negative everywhere in the region, where the Froude number is less then

*1*2

x

t

X 1 X 2

*2=
dx
dt

*1=
dx
dt

*1

T 1

0

*3=
dx
dt
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1; *3 can be either positive or negative. A well-posed boundary-value problem requires the

number of boundary conditions for the Riemann invariants to be equal to the number of out-

going characteristic lines for this boundary. Therefore, one or two boundary conditions are

necessary on each boundary depending on the sign of *3 on the boundary.

The boundary conditions for a totally reflective boundary x = X1 are

(3.30)

while the reflective conditions for the boundary x = X2 are

(3.31)

As in chapter 2, the method of Gustafsson and Kreiss (1979) is used to develop an absorb-

ing boundary conditions for time dependent problems. A totally absorbing boundary allows

waves to go through (absorb) but it does not allow any waves to reflect back into the com-

putation region. In characteristic terms, the invariants on outgoing characteristics do not

carry any disturbances back into the computational area. For the boundary x = X2, the re-

quirement of no wave motion on these characteristics implies that u = 0, v = 0, ! = 0, then

, and v´ = 0. In addition, it is assumed that the water depth is constant out-

side the area of computation and equal to the depth at the right boundary d(X2); then equa-

tion (3.27) implies that q is constant on that boundary. Therefore, the appropriate condi-

tions are

(3.32)

p q–=
v' 0=

q p–=
v' 0=

q 2 gd X2( )–=

q 2 gd X2( )–=

v' 0=
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For the left boundary the absorbing conditions are

(3.33)

The runup computations require a moving boundary conditions to be used for the tip of the

shoaling wave. Titov and Synolakis (1995) developed the moving boundary condition for

one-dimensional shallow-water-wave equations, which is described in chapter 2. The same

basic approach can be used for the runup boundary condition for the system (3.27).

3.2.4 Finite-difference scheme
To solve each equation in the system (3.27) the same explicit finite-difference scheme (2.7)

developed for the 1+1 problem is used. The scheme allows for the spatial grids with a vari-

able space steps + xi. The condition of the stability for this scheme is the Courant-

Friedrichs-Lewy criterion

(3.34)

The finite-difference scheme (2.7) is used for the computation of the unknown variables p,

q and v´ in the interior grid points of the computational area. However, these equations

can’t be used to compute boundary values. At those points, the boundary conditions (3.30)

– (3.33) determine only two among the three invariants. The other value on the boundary

(the value of the Riemann invariant on the incoming characteristic) is computed using one

of the governing equations (3.27) by the upwind finite-difference scheme

(3.35)

where pb, db are the values of the variables on the boundary.

p 2 gd X1( )=

v' 0=

+t min
xi+

ui ghi+
-------------------------"

pb
n 1+ pb

n t+
x+------ *1

n + x– pb
n( ) g + x– db

n( )–[ ]–=
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Inundation computations use moving boundary conditions to calculate the evolu-

tion of the wave on the dry bed. Since the 2+1 splitting technique uses the same finite-dif-

ference scheme as the 1+1 solution, the moving boundary algorithm is exactly the same as

described in Chapter 2 on page 27. The only addition to the 1+1 algorithm is that the veloc-

ity component normal to the direction of computation is kept zero on the moving shoreline

point.

During shoaling the wavelength of tsunamis becomes shorter. Therefore calcula-

tions using a uniform grid throughout the computational domain suffer either loss of accu-

racy in the nearshore field or loss of efficiency if a very fine grid is used. Either approach

does not produce consistent resolution. Here a variable grid in each direction is used. The

variable grid can create a consistent resolution for a one-dimensional domain (Titov and

Synolakis, 1995), or for a cylindrical two-dimensional domain, when the depth is changing

predominantly along one direction (Titov, 1989). To model tsunami wave propagation in

areas with complex bottom profiles containing complicated shoreline patterns and islands,

an additional nested grid is used for the near-shore computations. The nested grid has finer

grid–spacing for an efficient computation of the shorter waves in the nearshore area. A spe-

cial algorithm has been developed to automatically create a nested grid for the areas where

depth is less than a certain value. The same numerical scheme (2.7) (page 23) computes the

wave field on both grids at the same time. The computed values are interpolated on the

boundaries between the grids every time step to provide a continuous flow of information

between the areas. This approach allows for a computation in a large complicated areas

with a minimum loss of accuracy due to inconsistent resolution of the finite-difference grid.


